IEEE99

Electric Air Cleaner Composed of Non-thermal Plasma Reactor and Electrostatic Precipitator

M. Okubo*, T. Yamamoto, T.Kuroki and H.Fukumoto

Dept. of Energy Systems Engineering Osaka Prefecture University

Introduction

- A wide range of airborne particles can be collected effectively using an ordinary ESP as an indoor air cleaner. However, it is not possible to remove odors.
- In the present study, a new type of the electric air cleaner which realizes simultaneous removal of particles and odors was investigated.
- It is composed of a plasma reactor and a two-stage ESP.
 - The nonthermal plasma reactor decomposes the odors
 - The two-stage ESP collects the particles in the flow.
- The performances of these components were examined.
- In the experimental results, more than 90% of decomposition efficiency of acetaldehyde which causes the odor of tabacco smoke, and more than 99.7% collection efficiency of particles larger than 0.3µm were obtained in this system.

Barrier-type packed-bed plasma reactor

- Effective reactor length=200 mm
- BaTiO₃ pellets: d=1.7 \sim 2.0 mm, ε =10000
- AC high voltage (Max. 20kV) of 60Hz was applied to the reactor.

Experimental set-up for decomposition of CH₃CHO

Decomposition efficiency of CH₃CHO using the plasma reactor (dry condition)

Peak-to-Peak Voltage, V_{p-p} (kV)

 More than 90% decomposition efficiencies were obtained when the applied voltage became the optimum values

Byproducts concentrations (dry condition)

Considering the carbon balance, acetaldehyde was converted to CO, CO₂ and the other hydrocarbons by the nonthermal plasma

Decomposition efficiency of CH₃CHO using the plasma reactor (humidified condition)

 Compared with the previous result under dry condition, decomposition efficiencies decrease under humidified condition

Byproducts concentrations (humidified condition)

The results are similar to those on dry condition, but the concentrations of CO and CO₂ were lower because the decomposition efficiency was lower.

Decomposition efficiency of CH₃CHO using the silent discharge reactor (dry)

Power vs. voltage

Experimental set-up for evaluation of the ESP

Schematic of the two-stage ESP

Velocity distributions in the wind tunnel

Size dependent collection efficiencies for indoor air flow

Velocity	Particle	The number of particles in 1 L		Collection
m/s	Size µm	before ESP	after ESP	efficiency %
	0.3 ~ 0.5	135997	4	99.997
	0.5 ~ 1.0	11155	0	100
0.5	1.0 ~ 3.0	1527	0	100
	3.0 ~ 5.0	24	0	100
	5.0 ~	4	0	100
	0.3 ~ 0.5	131498	57	99.96
1	0.5 ~ 1.0	10646	4	99.96
	1.0 ~ 3.0	1536	0	100
	3.0 ~ 5.0	40	0	100
	5.0 ~	8	0	100
	0.3 ~ 0.5	72703	157	99.78
1.5	0.5 ~ 1.0	5574	13	99.77
	1.0 ~ 3.0	832	0	100
	3.0 ~ 5.0	18	0	100
	5.0 ~	6	0	100

Collection efficiency for monodispersed aerosol vs. flow velocity

Conclusions

Performance of the plasma reactor

- Under dry condition, CH₃CHO decomposition more than 90% was obtained. The optimum voltage increased with increase in the flow rate.
- The byproducts concentrations of CO and CO_2 were higher, the concentrations of NO_x and N₂O were lower. CH₃CHO was converted to CO, CO₂ and the other hydrocarbons.
- Under humidified condition, the decomposition efficiency became lower.

Performance of the two-stage ESP

- More than 99.7% collection efficiencies were obtained for particles greater than $0.3\mu m$ in indoor air.
- The collection efficiency for monodispersed aerosols was determined. It decreases with increase in the flow velocity and increases in the diameter of a particle.

Ozone concentration (dry condition)

Ozone concentration for air and CH₃CHO flows

Measurement results for air flow with $0.3\,\mu$ m aerosol

	Particle Size μm	The number of particles in 1 L				
Velocity m/s		Air	Air	Air+PSL	Air+PSL	
		before ESP	after ESP	before ESP	after ESP	
0.5	0.3 ~ 0.5	276	9.67	6510	13.0	
	0.5 ~ 1.0	9.67	0.67	69.3	0.33	
	1.0 ~ 3.0	1.0	0	4.33	0	
	3.0 ~ 5.0	0	0	0	0	
	5.0 ~	0	0	0	0	
1	0.3 ~ 0.5	1180	8.0	3879	13.0	
	0.5 ~ 1.0	81.0	0	90.3	0.67	
	1.0 ~ 3.0	3.0	0	3.7	0	
	3.0 ~ 5.0	0	0	0	0	
	5.0 ~	0	0	0	0	
1.5	0.3 ~ 0.5	539	4.0	2778	9.67	
	0.5 ~ 1.0	33.0	0.67	53.0	1.0	
	1.0 ~ 3.0	2.0	0	1.67	0	
	3.0 ~ 5.0	1.0	0	0	0	
	5.0 ~	0	0	0	0	

Measurement results for air flow with 0.6 μ m aerosol

	Particle Size μm	The number of particles in 1 L				
Velocity m/s		Air	Air	Air+PSL	Air+PSL	
		before ESP	after ESP	before ESP	after ESP	
0.5	0.3 ~ 0.5	759	14.3	718	10.7	
	0.5 ~ 1.0	40.3	0	875	0	
	1.0 ~ 3.0	2.67	0	3.67	0	
	3.0 ~ 5.0	0	0	0	0	
	5.0 ~	0	0	0	0	
1	0.3 ~ 0.5	869	7.0	1017	11.7	
	0.5 ~ 1.0	47.3	0	647	0.67	
	1.0 ~ 3.0	5.33	0	9.33	0	
	3.0 ~ 5.0	0.67	0	0	0	
	5.0 ~	0	0	0	0	
1.5	0.3 ~ 0.5	867	6.0	978	6.33	
	0.5 ~ 1.0	42.7	0	324	0.67	
	1.0 ~ 3.0	3.67	0	4.33	0	
	3.0 ~ 5.0	0	0	0	0	
	5.0 ~	0	0	0	0	